430 research outputs found

    Power coupling

    Full text link
    Power coupling is the subject of a huge amount of literature and material since for each particular RF structure it is necessary to design a coupler that satisfies some requirements, and several approaches are in principle possible. The choice of one coupler with respect to another depends on the particular RF design expertise. Nevertheless some 'design criteria' can be adopted and the scope of this paper is to give an overview of the basic concepts in power coupler design and techniques. We illustrate both the cases of normal-conducting and superconducting structures as well as the cases of standing-wave and travelling-wave structures. Problems related to field distortion induced by couplers, pulsed heating, and multipacting are also addressed. Finally a couple of design techniques using electromagnetic codes are illustrated. The paper brings together pictures, data, and information from several works reported in the references and I would like to thank all the authors of the papers.Comment: 23 pages, contribution to the CAS - CERN Accelerator School: Specialised Course on RF for Accelerators; 8 - 17 Jun 2010, Ebeltoft, Denmar

    EuPRAXIA@SPARC_LAB Conceptual Design Report

    Get PDF
    It is widely accepted by the international scientific community that a fundamental milestone towards the realization of a plasma driven future Linear Collider (LC) will be the integration of high gradient accelerating plasma modules in a short wavelength Free Electron Laser (FEL) user facility. To this end, in October 2019 the Horizon2020 Design Study EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) will propose the first European Research Infrastructure that is dedicated to demonstrate usability of plasma accelerators delivering high brightness beams up to 1-5 GeV for users. In this report we discuss the EuPRAXIA@ SPARC_LAB project, intended to put forward LNF as host of the EuPRAXIA European Facility. The EuPRAXIA@SPARC_- LAB facility will equip LNF with a unique combination of a high brightness GeV-range electron beam generated in a state-of-the-art X-band RF linac, a 0.5 PW-class laser system and the first 5th generation light source driven by a plasma accelerator. These unique features will enable at LNF new promising synergies between fundamental physics oriented research and high social impact applications, especially in the domain of Key Enabling Technologies (KET) and Smart Specialisation Strategies (S3)

    Metastatic Uterine Leiomyosarcoma in the Upper Buccal Gingiva Misdiagnosed as an Epulis

    Get PDF
    Uterine leiomyosarcoma (LMS) is a rare tumor constituting 1% of all uterine malignancies. This sarcoma demonstrates an aggressive growth pattern with an high rate of recurrence with hematologic dissemination; the most common sites are lung, liver, and peritoneal cavity, head and neck district being rarely interested. Only other four cases of metastasis in the oral cavity have been previously described. The treatment of choice is surgery and the use of adjuvant chemotherapy and radiation has limited impact on clinical outcome. In case of metastases, surgical excision can be performed considering extent of disease, number and type of distant lesions, disease free interval from the initial diagnosis to the time of metastases, and expected life span. We illustrate a case of uterine LMS metastasis in the upper buccal gingiva that occurred during chemotherapy in a 63-year-old woman that underwent a total abdominal hysterectomy with bilateral salpingo-oophorectomy for a diagnosis of LMS staged as pT2bN0 and that developed lung metastases eight months after primary treatment. Surgical excision of the oral mass (previously misdiagnosed as epulis at a dental center) and contemporary reconstruction with pedicled temporalis muscle flap was performed in order to improve quality of life. Even if resection was achieved in free margins, "local" relapse was observed 5 months after surgery

    Aplication of Frequency Map Analysis to Beam-Beam Effects Study in Crab Waist Collision Scheme

    Full text link
    We applied Frequency Map Analysis (FMA) - a method that is widely used to explore dynamics of Hamiltonian systems - to beam-beam effects study. The method turned out to be rather informative and illustrative in the case of a novel Crab Waist collision approach, when "crab" focusing of colliding beams results in significant suppression of betatron coupling resonances. Application of FMA provides visible information about all working resonances, their widths and locations in the planes of betatron tunes and betatron amplitudes, so the process of resonances suppression due to the beams crabbing is clearly seen.Comment: 11 pages, 10 figure

    The KLASH Proposal

    Get PDF
    We propose a search of galactic axions with mass about 0.2 µeV using a large volume resonant cavity, about 50 m3, cooled down to 4 K and immersed in a moderate axial magnetic field of about 0.6 T generated inside the superconducting magnet of the KLOE experiment [1] located at the National Laboratory of Frascati of INFN. This experiment, called KLASH (KLoe magnet for Axion SearcH) in the following, has a potential sensitivity on the axion-to-photon coupling, gaγγ, of about 6 × 10−17 GeV−1, reaching the region predicted by KSVZ [2] and DFSZ [3] models of QCD axions

    Review of the ELI-NP-GBS low level rf and synchronization systems

    Get PDF
    The Gamma Beam System (GBS) of ELI-NP is a linac based gamma-source in construction at Magurele (RO) by the European consortium EuroGammaS led by INFN. Photons with tunable energy and with intensity and brilliance well beyond the state of the art will be produced by Compton back-scattering between a high quality electron beam (up to 740 MeV) and a 515 nm intense laser pulse. Production of very intense photon flux with narrow bandwidth requires multi-bunch operation at 100 Hz repetition rate. A total of 13 klystrons, 3 S-band (2856 MHz) and 10 C-band (5712 MHz) will power a total of 14 Travelling Wave accelerating sections (2 S-band and 12 C-band) plus 3 S-band Standing Wave cavities (a 1.6 cell RF gun and 2 RF deflectors). Each klystron is individually driven by a temperature stabilized LLRF module, for a maximum flexibility in terms of accelerating gradient, arbitrary pulse shaping (e.g. to compensate beam loading effects in multi-bunch regime) and compensation of long-term thermal drifts. In this paper, the whole LLRF system architecture and bench test results, the RF reference generation and distribution together with an overview of the synchronization system will be described
    • …
    corecore